

NDEQ National Pollutant Discharge Elimination System (NPDES) Water Quality-Based Limits

Patrick Ducey - NPDES Permit Writer Nebraska Surface Water Monitoring Council April 26, 2018

NPDES and NPP Permits

Authorization to Discharge Under the National Pollutant Discharge Elimination System (NPDES)

This NPDES permit is issued in compliance with the provisions of the Federal Water Pollntion Control Act (33-U.S.C. Secs. 1251 et. seg. as amended to date), the Nebraska Environmental Protection Act (Neb. Rev. Stat. Secs. 81-1501 et. seg. as amended to date), and the Rules and Regulations promulgated pursuant to these Acts. The facility and outfall(s) identified in this permit are authorized to discharge wastewater and are subject to the limitations, requirements, prohibitions and conditions set forth herein. This permit regulates and controls the release of pollutants in the discharge(s) authorized herein. This permit does not relieve permittees of other duties and responsibilities under the Nebraska Environmental Protection Act, as amended, or established by regulations promulgated pursuant hereto.

NPDES Permit No.	NE0031810
NDEQ ID.	62816
Permittee	City of Aurora
Facility Name	Aurora Wastewater Treatment Facility
Facility Location	1205 South R Road, Aurora, NE 68818
Facility Mailing Address	905 13 th Street, Aurora, NE 68818
Latitude/Longitude	40.86639 °N, 97.97861 °W
Legal Description	E ½, Section 3, Township 10 N, Range 6 W, Hamilton County, NE
Receiving Water	Lincoln Creek (Segment BB4-20900 in the Big Blue River Basin)
Effective Date	April 1, 2018
Expiration Date	March 31, 2023

Pursuant to the Delegation Memorandum dated December 28, 2015, and signed by the Director, the undersigned hereby executes this document on the behalf of the Director.

Signed this _____ day of _____

Steven M. Goans Deputy Director – Water

Making what is illegal, legal

NEBRASKA

DEPT. OF ENVIRONMENTAL QUALITY

NDEQ Wastewater Permitting

- Federal Water Pollution Control Act (FWPCA), Clean Water Act (1977)
- National Pollutant Discharge Elimination System (NPDES) – 1972 Amendment to FWPCA
- Nebraska Pretreatment Program (NPP) one of four states with a program
- Concentrated Animal Feeding Operations (CAFOs) – not covered in this presentation

NPDES Point Sources and Non-Point Sources of Pollution

- Point source publicly owned treatment works (POTWs), PWTPs, industrial discharges (process and non-process wastewater), MS4s, CSOs, construction stormwater, industrial stormwater, fish hatcheries
- Non-point sources Agricultural wastewater, silvicultural discharges

Permit Limits

- Effluent limitation guidelines (ELGs) or technology-based effluent limitations (TBELs)
- Water quality-based effluent limitations (WQBELs)
- NPDES permits authorize discharges to waters of the state

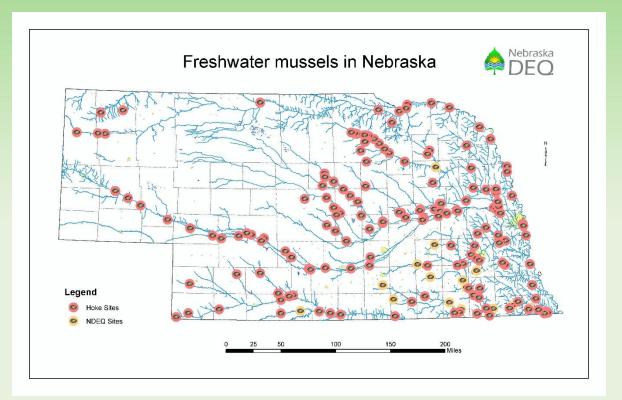
Technology-Based Effluent Limits

- Limits based on level of treatment technology
- Used for: POTWs (BOD, TSS)
 - ELGs for industrial process wastewater
 - NPP permitted facilities and limits
- BPT, BCT, BAT, new source, existing source
- Best professional judgment process (BPJ) for nonpromulgated limits

Water Quality-Based Effluent Limits

Water Quality-Based Effluent Limits

- Site-specific, pollutant specific
- Limits are developed using effluent parameters, receiving stream parameters, and water quality criteria
- NPDES criteria set forth in NDEQ Title 117, Chapter 4
- Common permit parameters with WQBELS: ammonia, total residual chlorine (TRC), chloride, conductivity, dissolved metals, whole effluent toxicity (WET)
- Limits are developed in wasteload allocations (WLAs)


Example WLA - Ammonia

- Ammonia is a non-conventional pollutant limited in all POTW NPDES permits and some industrial permits
- Ammonia is toxic to freshwater mussels
- NDEQ uses two methodologies to develop limits: steady-state and CORMIX
- First example will be steady-state
- Calculations are derived for Nebraska from the methods set forth in the Technical Support Document For Water Quality-based Toxics Control (EPA 505/2-90-001, March 1991)

New Ammonia Criteria is Protective of Mussels

Criteria is based on pH and temperature

WQBEL Modeling Data Required for Calculating Steady-State Limits for Ammonia

- Effluent Parameters
 - Median Flow
 - Critical temperature
 - Critical pH
 - Coefficient of variation

- Receiving Stream
 - Flow (1Q10, 30Q5)
 - Median temperature
 - Median pH
 - Median and critical background ammonia
 - Stream characteristics

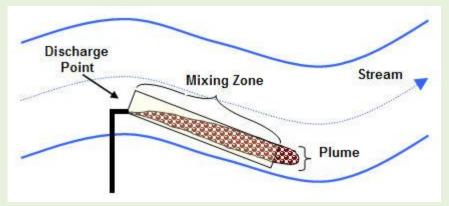
Critical: 90th percentile of data

Effluent Data – EPA ICIS System

Obtained from Facility Discharge Monitoring Reports (DMRs)

OMAHA MISSOURI RIVER WWTF

NPDES ID	n Featu	t De	ameter (Parameter Desc	Limit Frequer	ue Ty	DMR Value	Limit Unit	Statistical E	Limit \	NO	NODI Desc	Monitoring P
NE0036358	001	A	00310	BOD, 5-day, 20 de	Daily	C1	49.	mg/L	MO AVG				02/28/2013
NE0036358	001	A	00310	BOD, 5-day, 20 de	Daily	C1	49.	mg/L	MO AVG				03/31/2013
NE0036358	001	Α	00310	BOD, 5-day, 20 de	Daily	C1	50.	mg/L	MO AVG				01/31/2013
NE0036358	001	A	00310	BOD, 5-day, 20 de	Daily	C2	54.	mg/L	7 DA AVG				03/31/2013
NE0036358	001	Α	00310	BOD, 5-day, 20 de	Daily	C2	56.	mg/L	7 DA AVG				01/31/2013
NE0036358	001	Α	00310	BOD, 5-day, 20 de	Daily	C2	59.	mg/L	7 DA AVG				02/28/2013
NE0036358	001	A	00400	pН	Daily	C1	7.3	SU	DAILY MN	6.5			02/28/2013
NE0036358	001	Α	00400	рН	Daily	C1	7.3	SU	DAILY MN	6.5			03/31/2013
NE0036358	001		00400	рН	Daily	C1	7.4	SU	DAILY MN	6.5			01/31/2013
NE0036358	001	A	00400	pН	Daily	C3	7.6	SU	DAILY MX	9.			02/28/2013
NE0036358	001	Α	00400	pН	Daily	C3	7.7	SU	DAILY MX	9.			03/31/2013
NE0036358	001	A	00400	pН	Daily	C3	7.8	SU	DAILY MX	9.			01/31/2013
NE0036358	001	Α	00530	Solids, total suspe	Daily	C2	28.	mg/L	MO AVG	45.			02/28/2013
NE0036358	001	A	00530	Solids, total suspe	Daily	C2	28.	mg/L	MO AVG	45.			03/31/2013
NE0036358	001	Α	00530	Solids, total suspe	Daily	C2	30.	mg/L	MO AVG	45.			01/31/2013
NE0036358	001	Α	00530	Solids, total suspe	Daily	C3	31.	mg/L	7 DA AVG	65.			02/28/2013
NE0036358	001	A	00530	Solids, total suspe	Daily	C3	32.	mg/L	7 DA AVG	65.			01/31/2013
NE0036358	001	Α	00530	Solids, total suspe	Daily	C3	37.	mg/L	7 DA AVG	65.			03/31/2013


Receiving Stream Data – NDEQ Ambient Monitoring Stations, USGS, DNR

Segment	STATION #	DATE	Month	Temp	pН	Ammonia	NO3-NO2	Chloride				
MT1-10000	SMT1MISSR110	8/13/2009	8	26.93	8.35	0.03	0.70	17.00				
MT1-10000	SMT1MISSR110	8/3/2010	8	26.74	7.74	0.05	1.75	13.00				
MT1-10000	SMT1MISSR110	8/9/2010	8	28.12	8.03	0.05	1.48	14.90				
MT1-10000	SMT1MISSR110	8/16/2010	8	27.43	7.99	0.0566	1.48	14.50				
MT1-10000	SMT1MISSR110	8/23/2010	8	27.63	8.22	0.05	1.19	17.70				
MT1-10000	SMT1MISSR110	8/30/2010	8	24.35	8.15	0.05	0.90	15.90				
MT1-10000	SMT1MISSR110	9/4/07	9	24.26	8.11	0.02	1.01	16.00				
MT1-10000	SMT1MISSR110	9/18/07	9	19.51	8.37	0.02	0.73	16.00				
MT1-10000	SMT1MISSR110	9/3/08	9	21.40		0.02	0.50	15.00				
MT1-10000	SMT1MISSR110	9/10/2009	9	22.52	8.19	0.03	0.30	16.00				
MT1-10000	SMT1MISSR110	9/7/2010	9	21.46	8.23	0.05	0.67	14.20				
MT1-10000	SMT1MISSR110	9/13/2010	9	20.28	8.52	0.05	0.73	14.10				
MT1-10000	SMT1MISSR110	9/20/2010	9	19.07	8.24	0.0515	0.85	14.50				
MT1-10000	SMT1MISSR110	9/27/2010	9	18.06	7.93	0.0515	1.30	13.00				
MT1-10000	SMT1MISSR110	10/23/07	10			0.05	5.10	21.00				
MT1-10000	SMT1MISSR110	10/15/2008	10	15.48	8.22	0.1	0.50	17.00				
		Summer		24.35	8.15	0.05	1.32	16.00	AcTemp	27.622	AcAm	0.07405
MT1-10000	SMT1MISSR110	1/9/07	1	2.51	7.40	0.02	2.60	18.00				
MT1-10000	SMT1MISSR110	1/3/08	1	0.12	7.81	0.06	1.80	19.00				
MT1-10000	SMT1MISSR110	2/5/07	2	0.01	8.15	0.38	1.20	19.00				
MT1-10000	SMT1MISSR110	2/7/08	2	1.71	8.04	0.14	1.30	21.00				
MT1-10000	SMT1MISSR110	2/3/2009	2	0.98	7.95							
MT1-10000	SMT1MISSR110	11/14/07	11	8.53	8.30	0.02	3.20	21.00				
MT1-10000	SMT1MISSR110	11/12/2008	11	6.42	7.94	0.13	1.96	22.00				
MT1-10000	SMT1MISSR110	12/10/07	12	0.24		0.18	2.00	20.00				
MT1-10000	SMT1MISSR110	12/9/2008	12	1.76	8.19							
		Winter		1.71	8.00	0.13	1.96	20.00	AcTemp	6.842	AcAm	0.26

Criteria and Mixing Zones

- Ammonia and other wasteload allocations are derived using Acute and Chronic criteria
- Effluent must meet criteria at the end of a mixing zone
- Coldwater and Warmwater ammonia criteria and mixing zones

Calculation of Limits

Input parameters: effluent flow, criteria, receiving stream characteristics, CV

"MATH" to Produce Limits

Mixing Zones and Wasteload Calculations Target Velocity - V.

$$V_{i} = \frac{V_{k}}{\left(\frac{Flow_{k}}{Flow_{i}}\right)^{0.5}}$$

Target Depth – D

$$D_{t} = \frac{D_{k}}{\left(\frac{Flow_{k}}{Flow_{t}}\right)^{0.4}}$$

Target Cross-Sectional Area - CSA

$$CSA_{t} = \frac{CSA_{k}}{\left(\frac{Flow_{k}}{Flow_{t}}\right)^{0.5}}$$

Stream width at design flow - W

$$W_t = \frac{CSA_t}{D_t}$$

V. – Known velocity

Elow – Known flow

CSA_k - Known cross-sectional area

Shear velocity – \mathbf{v}^*

$$v * = \sqrt{g \cdot D_t \cdot s}$$

g – Gravity, 32.2 ∯/s/s s – Channel slope, ∯/mile

Lateral dispersion – g_{k}

$$d_y = (15 \cdot c \cdot D_t \cdot v^*)$$

c – Channel sinuosity Distance to complete lateral mixing - X₆

$$X_m = \frac{m \cdot W_i^2 \cdot V}{d_y}$$

m - 0.2, coefficient of uniformity

Maximum allowable effluent concentration - Cs

$$C_{\epsilon} = \frac{C_{\epsilon}(Q_{\epsilon} + Q_{\epsilon}) - C_{\epsilon}(Q_{\epsilon})}{Q_{\epsilon}}$$

C. – Water quality criteria

C_i - Background pollutant concentration

Qs – Seasonal design flow of receiving stream

X – Maximum mixing zone (Title 117)

Q. – Median seasonal effluent flow

Volume of stream utilized at mixing zone boundary - Qu

$$Q_{sb} = \frac{C_{\epsilon}(Q_{\epsilon}) - C_{s}(Q_{\epsilon})}{C_{s} - C_{s}}$$

NDEQ Steady State Wasteload Allocation

Facility	Receiv	ing Water	General Title 117 ID:	I Information Prepared By:	Date	Review by:	Date		Stre Spring	am Design Fi Summer	ows Winter
Missouri River WWTF	Misso	ourl River	MT1-10000	PWD	6-Sep-17			1010	11829	16301	10937
								7q10	13003	16843	13164
	Aquatic		Assigned Benefi	cial Uses				30q5	20095	24535	15185
State Resource	Life Use	Recreation	Agriculture							USGS 0661	0000
Water	Class	(Y/N)	(A/B)	Water Supply	Aesthetics	Key	Species	Source			
N	WWA	Y	٨	Public Drinking, Industrial	Y	1, 2, 1	8, b, h, l, j	Confidence	High	High	High
Is the waterboo current 303(d		Y		Does the Facility D Listed Pol		Y		•			
	,										
		Spring		Rece	iving Stream De	sign Parameter Summer	•			Winter	
	Value	Source	Confidence		Value	Source	Confidence		Value	Source	Confidence
Chronic Temp.	12.2	DEQ Data	High	Chronic Temp.	24.35	DEQ Data	High	Chronic Temperature	1.71	DEQ Data	High
Chronic pH	8.2	DEQ Data	High	Chronic pH	8.15	DEQ Data	High	Chronic pH	8	DEQ Data	High
Chronic NH3 background	0.06	DEQ Data	High	Chronic NH3 background	0.05	DEQ Data	High	Chronic NH3 background (mg/l)	0.13	DEQ Data	High
<u>(mg/l)</u>				<u>(mg/l)</u>				L			
Chronic Criteria (mg/l)	0.947			Chronic Criteria (mg/l)	0.468			Chronic Criteria (mg/l)	1.797		
Acute NH3				Acute NH3				Acute NH3			
background (mg/l)	0.324	DEQ Data	High	background (mg/l)	0.074	DEQ Data	High	background (mg/l)	0.26	DEQ Data	High
Other Chronic background				Other Chronic background				Other Chronic background			
Other Acute background				Other Acute background				Other Acute background			
TRC Chronic Criteria	0.011			TRC Chronic Criteria	0.011			TRC Chronic Criteria	0.011		
	<u> </u>	· · · · ·			Ettino	nt Design Para	meters				
	Value	Spring	Contractor			Summer			Matura	Winter	Contractor
Median MGD	27.95	Source	Confidence High	Median MGD	Value 30.9	Source ICIS	Confidence High	Median MGD	Value 25.3	Source ICIS	Confidence High
cubic feet/sec	43.244			cubic feet/sec	47.808			cubic feet/sec	38.144		
Temperature	19.889	ICIS	High	Temperature	24.889	ICIS	High	Temperature	19.111	ICIS	High
PH	7.79	ICIS	High	pH	7.88	ICIS	High	рН	7.97	ICIS	High
Acute NH3 Crite criteria work		5.904		Acute NH3 Criteri worksh		3.254		Acute NH3 Criter criteria works		4.447	
TRC Acute Criteria	0.019			TRC Acute Criteria	0.019			TRC Acute Criteria	0.019		
				Grinerin							
Known Stream				tream Information Known Average	Stream Slope		Zone to 5000				
Flow (cfs)		erage Velocity ft/s)	Depth (ft)	Width (ft)	(ft/mile)	Ls/Lv	20/0 to 5000 Ft?				
16301		2.96	8.3	620	0.8	1.05	Y				
	c ,	pring			Sumn	DAC			Win	ter	
Changle Mills	3)			Chronic NH3	Jum						
Chronic NH3 WLA	% Stream	Acute NH3 WLA	%Stream	WLA	% Stream	Acute NH3 WLA	% Stream	NH3 WLA	% Stream	Acute NH3 WLA	%Stream
41.66	8.8	36.33	1.8	21.41	8.8	24.70	1.88	88.11	9.8	27.18	1.8
Character MC 4				Character Mill C		A		Character Mill C			
Chronic WLA	% Stream	Acute WLA	%Stream	Chronic WLA	% Stream	Acute WLA	% Stream	Chronic WLA	% Stream	Acute WLA	%Stream
0.341	0.07	0.120	1.86	0.384	8.88	0.148	1.88	0.381	10.00	0.123	1.87

NEBRASKA DEPT. OF ENVIRONMENTAL QUALITY

Wasteload Allocation Results and Proposed Limits

ENTER DATA INTO BLUE SHADED AREAS ONLY									
General Data									
Facility Name:	Missouri Riv	ver WWTF							
Permit Number:	NE0036358	3							
Date:	6-Sep-17								
Permit Writer:	PWD								
Receiving Stream:	Missouri Riv	ver							
Title 117 ID:	MT1-10000								
Aquatic Use:	WWA								
Pollutant of Concern: NH3									
Coefficient of Variation (CV):									
Spring	0.443								
Summer	0.178								
Winter	0.593								
Samples/Month (N):	4								
Chronic (N) day average:	4								
	WLA Works	heet							
	Spring	Summer	Winter						
Effluent Flow in cfs:	43.24424	47.8085	39.1442						
1q10 Stream Flow in cfs:	11829	16301	10937						
7q10 Stream Flow in cfs:	13003	16843	13164						
30q5 Stream Flow in cfs:	20095	24535	15185						
% 1q10 used for mixing:	1.927731	1.98	1.9435						
% 7q10 used for mixing:	9.850511 9.76198 9.94458								
% 30q5 used for mixing:	9.850511 9.76198 9.94458								
Acute WLA:	35.33	24.70	27.18						
Chronic WLA:	41.55	21.41	66.11						

Water Quality Based Permit Limit Calculations for:									
	NH3								
	Spring	Summer	Winter						
Acute WLA	35.33	24.70	27.18						
Chronic WLA	41.55	21.41	66.11						
Acute LTA	14.43	16.63	8.81						
Chronic LTA	25.58	17.48	35.10						
Concentration B	ased Peri	nit Limits:							
Maximum Daily (mg/L)	35.33	24.70	27.18						
Average Monthly (mg/L)	20.20	19.18	13.62						
Mass Based Permit Limits:									
Maximum Daily (kg/day)	3737.38	2888.44	2603.09						
Average Monthly (kg/day	2137.05	2242.70	1304.63						

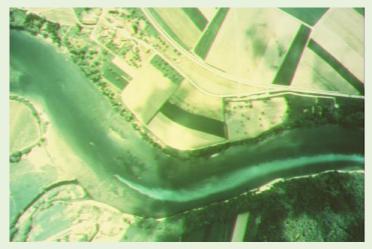
Whole Effluent Toxicity Limits								
**Based on CV of 0.6								
Spring Summer Winter								
Acute WLA	1.88	2.32	1.93					
Chronic WLA	30.62	35.39	34.44					
Acute LTA	0.60	0.75	0.62					
Chronic LTA	16.15	18.67	18.17					
Acute Toxicity (TUa)	1.88	2.32	1.93					
Chronic Toxicity (TUc)	50.30	58.14	56.58					
Permit Limits:								
Acute Toxicity (TUa)	1.88	2.32	1.93					

Calculated WLA Multipliers									
Spring Summer Winte									
acute WLA multiplier:	0.409	0.674	0.324						
chronic WLA multiplier:	0.616	0.817	0.531						
MDL LTA multiplier:	2.45	1.48	3.08						
AML LTA multiplier:	1.40	1.15	1.55						

CORMIX Method

Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help Discharge Output Processing Conservative Pollutant Type Pollutant Pollutant Type Pollutant Pollutant <td< th=""><th>ORMIX √10.0.3.0</th><th>-</th><th></th><th>×</th></td<>	ORMIX √10.0.3.0	-		×						
Lead Dier Save Aa Print SstUnits Corspy Witkins PC Tree Corvue Cordet FFL Corservative Cordet FFL Corservative Cordet FFL Corservative Cordet FFL Corservative Processing Effluent Characterization/Pollutant Type Pollutant Type Pollutant Processing Conservative Pollutant Heated Discharge Brine Discharge • The pollutant undergoes a first-order decay or growth process. Decay Coefficient 0.10484 / /day (+ for decay for growth) Discharge Concentration (Excess) 77.26 mg/l Effluent Characterization Effluent Density Fresh Non-Fresh Decay Effluent Flow Rate/Velocity Effluent Characterization	Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help									
Effluent Characterization/Pollutant Type Pollutant Type Conservative Pollutant Mon-Conservative Pollutant Heated Discharge Brine Discharge The pollutant undergoes a first-order decay or growth process. Decay Coefficient 0.10484 v /day (+ for decay , - for growth) Discharge Concentration (Excess) 77.26 v mg/l Effluent Characterization Effluent Flow Rate/Velocity Frosh Non-Fresh Density Temperature		CorSens		_						
Pollutant Type Conservative Pollutant Heated Discharge Brine Discharge The pollutant undergoes a first-order decay or growth process. Decay Coefficient 0.10484 Discharge Concentration (Excess): 177.26 Effluent Characterization Effluent Flow Rate/Velocity From Rate Velocity Ten pol	Project Effluent Ambient Discharge Mixing Zone Output	Effluent P		-						
The pollutant undergoes a first-order decay or growth process. Decay Coefficient: 0.10484 Jday (+ for decay , - for growth) Discharge Concentration (Excess): 177.26 Flow Rate / Velocity Effluent Flow Rate/Velocity Fresh Non-Fresh Density Temperature										
Decay Coefficient 0.10484 Decay Coefficient 0.10484 /day (+ for decay , - for growth) Discharge Concentration (Excess): 77.26 Effluent Characterization Effluent Flow Rate/Velocity Fresh Non-Fresh Density Temperature Temperature	Conservative Pollutant Non-Conservative Pollutant Heated Discharge Brine Discharge									
Effluent Characterization Effluent Flow Rate/Velocity Fiow Rate Velocity Density Temperature										
Effluent Flow Rate/Velocity Fresh Non-Fresh Density Temperature	Discharge Concentration (Excess) ; 77.26 mg/l									
Status: C.\Users\patrick.ducey\Documents\NPDES\MajMun\Omaha MR - NE0036358\Omaha Missouri River WWTF - NE0036358\Cormix\MR_Ammonia_Chronic_Spring 4	Effluent Flow Rate/Velocity Effluent Density Flow Rate Velocity Flow Rate: 43.248 Cfs Temperature Temperature: 18.056									

		Missouri River WRRF - Ammonia						1			Mis	souri Riv	er WRRF -	TRC	
		Spr			mer		nter			Spring			mer		nter
		Chronic	Acute	Chronic	Acute	Chronic	Acute			Chronic	Acute	Chronic	Acute	Chronic	Acute
Kd	d ⁻¹	0.10484	0.14983	0.18317	0.21288	0.06475	0.08197	Kd	d ⁻¹	20	20	20	20	20	20
C _e	mg/l	77.26	59.53	31.15	44	107.97	42.81	C,	mg/l	0.83	0.37	0.901	0.387	1.232	0.365
Q,	MGD	27.95	27.95	30.9	30.9	25.3	25.3	Q.	MGD	27.95	27.95	30.9	30.9	25.3	25.3
Q.	cfs	43.248	43.248	47.813	47.813	39.148	39.148	Q.	cfs	43.248	43.248	47.813	47.813	39.148	39.148
T.	°c	18.056	19.889	23.889	24.889	15.833	19.111	T.	°c	18.056	19.889	23.889	24.889	15.833	19.111
D _s	ft	11.2015	8.15354	12.5403	9.96881	8.97119	7.17877	D _s	ft	7.81242	8.15354	10.5341	9.96881	8.27841	7.17877
Vels	ft/s	3.01	2.51	3.25	2.8	2.98	2.76	Vels	ft/s	2.92	2.51	2.71	2.8	2.78	2.76
W _s	ft	596	578	602	584	568	552	w,	ft	570	578	590	584	572	552
Q _s	cfs	20095	11829	24535	16301	15185	10937	Q,	cfs	13003	11829	16843	16301	13164	10937
n		0.03	0.03	0.03	0.03	0.03	0.03	n		0.03	0.03	0.03	0.03	0.03	0.03
T,	°c	12.2	19.976	24.35	27.622	1.71	6.842	T,	°c	12.2	19.976	24.35	27.622	1.71	6.842
u	mph	12.1	12.1	9.55	9.55	10.58	10.58	u	mph	12.1	12.1	9.55	9.55	10.58	10.58
θ	deg	0	0	0	0	0	0	θ	deg	0	0	0	0	0	0
σ	deg	90	90	90	90	90	90	σ	deg	90	90	90	90	90	90
We	ft	4.65	4.65	4.889	4.889	4.424	4.424	We	ft	4.65	4.65	4.889	4.889	4.424	4.424
d _e	ft	2.325	2.325	2.445	2.445	2.212	2.212	d _e	ft	2.325	2.325	2.445	2.445	2.212	2.212
C _s	mg/l	0.06	0.324	0.05	0.074	0.13	0.26	C _s	mg/l	0	0	0	0	0	0
C _{std}	mg/l	0.947	5.904	0.468	3.254	1.797	4.447	Cstd	mg/l	0.011	0.019	0.011	0.019	0.011	0.019
C _{std}	mg/l	0.887	5.58	0.418	3.18	1.667	4.187	C _{std}	mg/l	0.011	0.019	0.011	0.019	0.011	0.019
L _s	ft	5000	250	5000	250	5000	250	L _s	ft	5000	250	5000	250	5000	250
L _{ROI} PCTF	ft	79500	79500	79500	79500	79500	79500	L _{ROI} PCTF	ft	79500	79500	79500	79500	79500	79500
CROI PCTF	mg/l	0.287	0.404	0.101	0.225	0.509	0.292	CROI PCTF	mg/l	1E-06	1E-06	5E-06	3E-06	0.00001	3E-06
Width _{mix}	ft	104.07	21.69	86.68	22.83	94.32	35.33	Width _{mix}	ft	95.28	39.57	88.55	33.3	124.38	49.11
Mix	%	0.17461	0.03753	0.14399	0.03909	0.16606	0.064	Mix	%	0.16716	0.06846	0.15008	0.05702	0.21745	0.08897
Cormix #		3	3	3	3	3	3	Cormix #		3	3	3	3	3	3
Steps		100	100	100	100	100	100	Steps		100	100	100	100	100	100


Data Needed

CORMIX

- Useful for discharges into larger streams and rivers
- Most accurate results as more model parameters are used in the calculation (pipe diameter, different season characteristics, water density, decay coefficient)
- Can be used to find background pollutant levels
- Can model diffusers and different pipe orientations

CORMIX Use Example

Model Proposed Results in the Permit

Steady-state or CORMIX WLA results

Geneva WW	TF – Projected Ammonia Limitations D	erived from WLAs		
Parameter	Monthly Average	Maximum		
Spring Ammonia	2.96 mg/L	5.93 mg/L		
(March 1 – May 31)	1.90 kg/day	3.82 kg/day		
Summer Ammonia	1.48 mg/L	2.96 mg/L		
(June 1 – October 31)	0.94 kg/day	1.88 kg/day		
Winter Ammonia	3.23 mg/L	6.47 mg/L		
(Nov. 1 – February 28 [29])	2.11 kg/day	4.24 kg/day		

• Existing limits

Spring Ammonia	6.21 mg/L	10.76 mg/L	Monthly
Summer Ammonia	3.55 mg/L	6.15 mg/L	Monthly
Winter Ammonia	2.98 mg/L	5.17 mg/L	Monthly

• Use most stringent seasonal limits, compare to existing

Final Permit Limits

Table 2: Seasonal Discharge Limits and Monitoring Requirements						
Parameters	Storet #	Units	Discharge Limits		Monitoring	Sample
			Monthly Average	Daily Maximum	Frequency	Туре
Spring Ammonia (March 1 – May 31)	00610	mg/L	34.04	59.53	Three Times Per Week	24-Hour Composite
		kg/day	3603 ^(a)	6300 ^(s)		
Summer Ammonia (June 1 – Oct. 31)	00610	mg/L	29.32	37.76	Three Times Per Week	24-Hour Composite
		kg/day	3430 ^(a)	4417 ^(s)		
Winter Ammonia (Nov. 1 – Feb. 28 [29])	00610	mg/L	21.46	42.81	Three Times Per Week	24-Hour Composite
		kg/day	2055 ^(a)	4100 ^(s)		
Spring TRC (March 1 – May 31)	50060	mg/L	0.101	0.27	Three Times Per Week ^(b)	Grab ^(e)
		kg/day	11.00 ^(s)	28.80 ^(a)		
Summer TRC (June 1 – Oct. 31)	50060	mg/L	0.13	0.33	Three Times Per Week ^(b)	Grab ^(c)
		kg/day	14.12 ^(s)	36.97 ^(a)		
Winter TRC (Nov. 1 – Feb. 28 [29])	50060	mg/L	0.10	0.27	Three Times Per Week ^(b)	Grab ^(c)
		kg/day	10.19 ^(s)	26.67 ^(a)		
Spring Acute Toxicity (March 1 – May 31) – Ceriodaphnia sp	61425	TUa	Report	3.38	Once Per Season	24-Hour Composite
Spring Acute Toxicity (March 1 – May 31) – Pimephales promelas	61427	TUa	Report	3.38	Once Per Season	24-Hour Composite
Summer Acute Toxicity (June 1 – Oct. 31) – Ceriodaphnia sp	61425	TUa	Report	4.30	Once Per Season	24-Hour Composite
Summer Acute Toxicity (June 1 – Oct. 31) – Pimephales promelas	61427	TUa	Report	4.30	Once Per Season	24-Hour Composite
Winter Acute Toxicity (Nov. 1 – Feb 28[29]) – Ceriodaphnia sp	61425	TUa	Report	4.26	Once Per Season	24-Hour Composite
Winter Acute Toxicity (Nov. 1 – Feb 28[29]) – Pimephales promelas	61427	TUa	Report	4.26	Once Per Season	24-Hour Composite

Other Pollutant Parameters and Models

- Dissolved metals hardness-based criteria
- TRC no background chlorine
- Conductivity only agricultural season
- Dissolved oxygen for BOD and CBOD, using Streeter-Phelps, assumes instant and complete mixing
- Reasonable potential calculation does the pollutant have the RP to violate water quality standards

Antidegradation

• All permit limits and requirements written and enforced to maintain water quality and to be protective of the fishable/swimmable goals of the CWA

Questions?

Patrick Ducey – (402) 471-2188 Ppatrick.ducey@nebraska.gov

